Multi-Label Learning with PRO Loss

نویسندگان

  • Miao Xu
  • Yu-Feng Li
  • Zhi-Hua Zhou
چکیده

Multi-label learning methods assign multiple labels to one object. In practice, in addition to differentiating relevant labels from irrelevant ones, it is often desired to rank the relevant labels for an object, whereas the rankings of irrelevant labels are not important. Such a requirement, however, cannot be met because most existing methods were designed to optimize existing criteria, yet there is no criterion which encodes the aforementioned requirement. In this paper, we present a new criterion, PRO LOSS, concerning the prediction on all labels as well as the rankings of only relevant labels. We then propose ProSVM which optimizes PRO LOSS efficiently using alternating direction method of multipliers. We further improve its efficiency with an upper approximation that reduces the number of constraints from O(T ) to O(T ), where T is the number of labels. Experiments show that our proposals are not only superior on PRO LOSS, but also highly competitive on existing evaluation criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Consistency of Multi-Label Learning

Multi-label learning has attracted much attention during the past few years. Many multilabel learning approaches have been developed, mostly working with surrogate loss functions since multi-label loss functions are usually difficult to optimize directly owing to non-convexity and discontinuity. Though these approaches are effective, to the best of our knowledge, there is no theoretical result ...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Multi-label Active Learning with Auxiliary Learner

Multi-label active learning is an important problem because of the expensive labeling cost in multilabel classification applications. A state-of-the-art approach for multi-label active learning, maximum loss reduction with maximum confidence (MMC), heavily depends on the binary relevance support vector machine in both learning and querying. Nevertheless, it is not clear whether the heavy depend...

متن کامل

A Deep Model with Local Surrogate Loss for General Cost-sensitive Multi-label Learning

Multi-label learning is an important machine learning problem with a wide range of applications. The variety of criteria for satisfying different application needs calls for costsensitive algorithms, which can adapt to different criteria easily. Nevertheless, because of the sophisticated nature of the criteria for multi-label learning, cost-sensitive algorithms for general criteria are hard to ...

متن کامل

Learning Deep Latent Space for Multi-Label Classification

Multi-label classification is a practical yet challenging task in machine learning related fields, since it requires the prediction of more than one label category for each input instance. We propose a novel deep neural networks (DNN) based model, Canonical Correlated AutoEncoder (C2AE), for solving this task. Aiming at better relating feature and label domain data for improved classification, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013